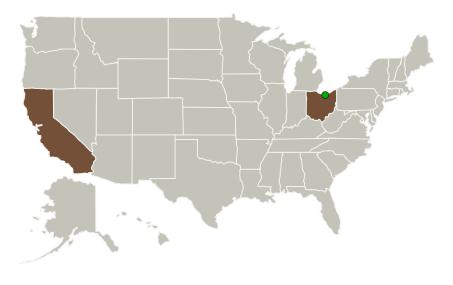
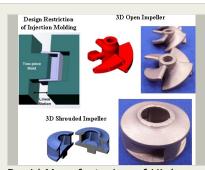
Rapid Manufacturing of High Power Electric Propulsion Components, Phase I




Completed Technology Project (2015 - 2015)

Project Introduction

A flexible, lower cost approach to the rapid manufacture of high power electric propulsion components is desirable. Today's near-net fabrication technologies are extremely limited in terms of design flexibility due to reduction-based fabrication approaches. While modern additive manufacturing approaches show great promise, these still require significant development for use with higher temperature materials such as refractory metals. Considering this need for design flexibility as well as shorter development cycles, reduced costs, and minimized variance in making high power electric propulsion components, an innovative technology for rapid manufacturing that can be used with high temperature materials will be demonstrated in this work. Specifically, an additive manufacturing/metal injection molding manufacturing technology will be developed to produce a protoytpe article for a high power electric propulsion component made from a refractory alloy.

Primary U.S. Work Locations and Key Partners

Rapid Manufacturing of High Power Electric Propulsion Components, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Rapid Manufacturing of High Power Electric Propulsion Components, Phase I

Completed Technology Project (2015 - 2015)

Organizations Performing Work	Role	Туре	Location
Transition45 Technologies, Inc.	Lead Organization	Industry Small Disadvantaged Business (SDB)	Orange, California
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations		
California	Ohio	

Project Transitions

July 2015: Project Start

Closeout Summary: Rapid Manufacturing of High Power Electric Propulsion Components, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/139384)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Transition45 Technologies, Inc.

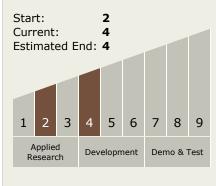
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

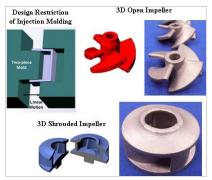

Program Manager:

Carlos Torrez

Principal Investigator:

Edward Chen

Technology Maturity (TRL)


Small Business Innovation Research/Small Business Tech Transfer

Rapid Manufacturing of High Power Electric Propulsion Components, Phase I

Completed Technology Project (2015 - 2015)

Images

Briefing Chart Image

Rapid Manufacturing of High Power Electric Propulsion Components, Phase I (https://techport.nasa.gov/imag e/131674)

Technology Areas

Primary:

- **Target Destinations**

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

